If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20(t)=-16t^2+25
We move all terms to the left:
20(t)-(-16t^2+25)=0
We get rid of parentheses
16t^2+20t-25=0
a = 16; b = 20; c = -25;
Δ = b2-4ac
Δ = 202-4·16·(-25)
Δ = 2000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2000}=\sqrt{400*5}=\sqrt{400}*\sqrt{5}=20\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{5}}{2*16}=\frac{-20-20\sqrt{5}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{5}}{2*16}=\frac{-20+20\sqrt{5}}{32} $
| -6x+30=3x-33 | | 16x=8•10 | | 3-15p=3(5p-1) | | 3-15p=3 | | 3x-13=6x-11 | | -4.9t^2-3t+400=0 | | 2x+180-4x=140 | | 14b(b-1)=-4+4b | | 4(31/2x-3)=8 | | 12=2b^2-2b+1 | | 70=7(m+2.2) | | 104=16(2t)+729 | | F(x)=-2x^2+4x-5 | | 3102=47(p+20) | | 2f-4=4(4f-8) | | (X-2)^2=y | | 24=(3y)= | | 65=1/2+x | | 2x/4=5x+3 | | -60x=6x^2 | | −5y2+7y+31=−8y+35 | | 3(n-1=5n+3 | | 65=1/2-x | | 3v^2–43v+14=0 | | -10=-5m-25 | | 2u-u=3 | | 49v2+42v+9=0 | | -33=x+12 | | 175=0.32x-20.51 | | 4(2n+1)=16 | | -6y+2y=2 | | Y-4=2/3(x-6) |